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Abstract 

The well known general method due to Bertaut for 
calculating the Coulombic lattice sums in crystals has 
been extended to evaluating the Coulombic contribu- 
tion to the dynamical matrices in harmonic lattice- 
dynamical calculations. The procedure is particularly 
simple and close to usual crystallographic routines, 
in line with Bertaut's treatment of the general prob- 
lem. It involves the evaluation of first derivatives of 
structure factors for two satellite reflexions of indices 
h°+ q and h ° - q  for each reflexion of indices h °, with 
respect to the primitive lattice, where q is the wave 
vector; the 'self' contribution can be directly evalu- 
ated from the second derivatives of F(h°)'s. A par- 
ticularly interesting feature is that the contribution 
of the macroscopic field is already included, and it 
derives from the two satellites of F(O00). 

Introduction 

The problem of calculating various properties in crys- 
tals depending upon the vibrational spectrum has 
been exciting considerable interest even outside the 
strict field of solid-state physics. For instance, the 
calculation of anisotropic displacement parameters 
(a.d.p.'s) might become a matter of routine even for 
complex molecular crystals, owing to recent substan- 
tial improvements in computers and in suitable pro- 
cedures [see, for instance, Gramaccioli (1987, 1989); 
Gramaccioli & Filippini (1983, 1985)]; also the 
derivation of thermodynamic properties, including 
entropy, specific heat and free energy, starting from 
force-field models seems to be one of the major goals 
in physical chemistry, in materials science and in 
geology, since it can afford a connection between a 
crystal structure and its stability field. In these appli- 
cations, one of the basic difficulties consists in the 
slow convergence of the Coulombic lattice sums. This 
problem was first solved by Ewald (1921) by consider- 
ing summation on the reciprocal lattice; a more gen- 
eral treatment of the same problem has been given 
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by Bertaut (1952) and has been extended by the same 
author to a number of different applications (Bertaut, 
1978a, b, 1983, 1985, 1986). In our opinion, Bertaut's 
method has the definite advantages of being very 
understandable and of being close to crystallographic 
routines. For this reason, we adopted this method for 
evaluating the Coulomb energy in molecular crystals 
(Gramaccioli & Filippini, 1979). In lattice dynamics, 
the coupling coefficients in the equation of motion 
are related to the 'static' lattice sums. Born & 
Thompson (1934) and Thompson (1935) considered 
this problem for the first time, starting from Ewald's 
criterion, and the use of a correct formulation for the 
case of sodium chloride was first due to Kellermann 
(1940)l in his classical work. Although Kellermann's 
paper is clear and simple to experts in the field, its 
application to the general case involves considerable 
complexity, both in understanding the principle and 
in applying it in practice. In view of the simplicity of 
Bertaut's method, we have considered its extension 
to lattice dynamics as particularly interesting and 
useful. 

Principle of the method 

The elements of the dynamical matrix D in the har- 
monic approximation of crystal motion are of the 
kind: 

Dkk'=(mkmk,)- ' /2~ okk(o,  l) exp (2~riq. Ar') (1) 
I 

where 

O , ~ k ' ( 0 , 1 )  : o l = ol E / O X i k 0 1 X j k '  (la) 

(see, for instance, Willis & Pryor (1975), equation 
o 3.10b), where E is the potential energy, Xik is a 

coordinate of the kth atom in the unit cell, XJk, is a 
coordinate of the k'th atom in the crystal, related to 

o Xjk, by a lattice translation r I (1 = 0 when r t=  0), q is 
the wave vector, Ar t is the distance between the two 
atoms involved, m k and m k, are the masses of the 
atoms k and k', respectively; the summation ~t is 
extended (in principle) to all the translated units in 
the crystal. 
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If k = k', D kk includes the so-called 'self terms' 
• , ~ ( o ,  o ) :  

• ,~k(0,0) ~ o o = O E/OXikC3Xjk. 

Since we are dealing here with Coulombic energy 
only, the energy E can be expressed by the following 
series, corresponding to (41) in Bertaut (1952): 

E = E Ez = 18"rrR2/V~ ]F(h)l 2 
I h 

2 x[s in (a ) -acos (a ) ]2 /as -3 / (5R)~z ; .  (2) 
J 

Here R is a distance not exceeding one half of the 
shortest distance between the atoms, zj is the charge 
o f t h e j t h  atom, V is the unit-cell volume., a = 2rr hlR, 
and the F(h) 's  are the Fourier transforms of the 
charge density, which for the point-charge crystal are 
obtained just as crystallographic structure factors, 
where the atomic scattering factors are replaced with 
atomic charges. 

Insertion of the second derivatives of (2) into (1) 
must be done cautiously. In fact, contrary to the usual 
assumption in crystallography, the space-group 
relationships between the positions of symmetry- 
equivalent atoms are not necessarily respected at any 
instant during motion. In other words, the formula 
x ' =  Mx+w,  where x and x' are position vectors of 
symmetrically related atoms, M is a rotation matrix 
and w a translation vector holds for the average posi- 
tions only, whereas it does not hold (as such) for the 
general case of instantaneous displacements. For this 
reason, the calculation of derivatives of structure 
factors in (2) should not be simplified on the grounds 
of the usual space-group-symmetry relationships. 

For q = 0, all the atoms related by unit-cell transla- 
tions vibrate in phase, and the translational symmetry 
between the different unit cells is maintained. In this 
case, the application of Bertaut's criterion becomes 
very simple, by combining (1), l ( a )  and (2): 

kk' 18"n'RZ ~f (ah)  821Fh12 
Dij V(mkmk.)l/2 oxiOgoxj 0. ( 3 )  

where f (ah)  = [sin (a )  - a cos ( a ) ]2/a 8, a function of 
the indices h only. 

The evaluation of these second derivatives can be 
done in several ways. An example is given below [see 
(5a) to (6)]. The summation can be performed up to 
a certain limiting value of sin 0/A, so that convergence 
is reached in practice. In spite of its relative simplicity, 
the case for q = 0 is very useful in practical applica- 
tions, since all the Raman and infrared active modes 
can be calculated with this assumption. 

For the general case in the Brillouin zone, the 
application of (1) and (2) is not so straightforward. 
In this case, for q ~ 0, as we have seen, the transla- 
tional symmetry does not hold in general between 
different unit cells; however, it can still be assumed 

to hold provided a suitable multiple unit cell is 
chosen. For instance, a new cell could be considered 
where two unit-cell vectors are perpendicular to the 
wave vector q and the third is one of the original 
unit-cell vectors r °, not perpendicular to q. Such a 
new unit cell (here referred to as intermediate) might 
not necessarily be primitive, and its multiplicity will 
be na -> 1 (see Fig. 1 a). 

The reciprocal lattice of this intermediate cell has 
a certain number of additional points with respect to 
the starting unit cell, corresponding to extinct reflec- 
tions. Starting from the intermediate cell, a still larger 
unit cell can be considered, where r ° is replaced by 
r' = n/r°; here n/is an integer chosen in order to assign 
the smallest possible integral value to n/q. r °. This is 
always possible, provided q has rational components,  
an assumption which can easily be made for all prac- 
tical applications. The multiplicity of this final unit 
cell will be nfna with respect to the original unit cell 
of the crystal. 

Since the phase difference between any such final 
unit cells is an integral multiple of 2rr, with respect 
to these larger cells the equivalent atoms vibrate in 
phase, and the translational symmetry is respected, 
as for q = 0. 

The reciprocal lattice of this final unit cell is related 
to the reciprocal lattice of the intermediate unit cell 
with multiplicity ha, with additional points at h =  
H°+ tq, where t is an integer ranging from 1 to nr- 1 
and H ° is a reciprocal-lattice vector of the intermedi- 
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Fig. 1. (a) An example of relationships in the direct lattice between 
the original unit cell (hatched), the intermediate unit cell (dotted) 
and the final unit cell, chosen in order to have q .  r = integer. In 
this particular case r ° is the unit-cell axis c, and q = e*/4. The 
final unit cell behaves as if q = 0 with respect to the other 
equivalent cells in the structure, i.e. there is no phase variation, 
or better, the phase variation is dealt with at the interior of  the 
largest cell taking the phase relationships between the smaller 
cells into account. In this particular case, ~ and r ° are parallel 
(for the sake of simplicity), but they do not have to be. (b) A 
sample of  the reciprocal lattice (drawn on arbitrary scale) corre- 
sponding to the situation of  (a).  Here the original (primitive) 
reciprocal unit cell has dashed contours; the intermediate 
reciprocal unit cell is dotted, and the final reciprocal unit cell 
is hatched. For each point of  the primitive reciprocal lattice 
(marked by a ring) only the satellites marked by a cross should 
be considered. 
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ate unit cell. For t = knc, where k is any integer, the 
vector h will coincide with a vector H '° of the recip- 
rocal lattice of the intermediate cell, i.e. the indices 
will be integer; for t # kn r these indices will instead 
be fractional. All this is clear, if one considers 
that if n fq .  r °=  v is an integer, and calling r °* the 
reciprocal-lattice vector relative to r ° (r °. r °* = 1), it 
must hold that 

nfq = vr °*, 

a vector connecting two points of the reciprocal lattice 
of the intermediate cell. 

By reference to a picture of a reciprocal-lattice layer 
including the wave vector q, the final multiple cell 
involves n f - 1  additional points on a straight line 
starting from any point of the reciprocal lattice of the 
intermediate unit cell, until another point of this 
reciprocal lattice is reached (see Fig. lb). If nd > 1, 
the situation is similar to starting our consideration 
directly from any non-primitive unit cell. As we will 
see, our arguments do not necessarily imply primitive 
unit cells (see below). 

Because the phase of motion with respect to the 
other cells is equal, (3) could be applied as such to 
the final cell, but this would lead to inconveniences 
in practical applications. In fact, the contributions of 
equivalent atoms (by unit-cell translations) in usual 
lattice-dynamical applications are considered 
together, whereas from (3) these contributions within 
the final unit cell are separated, leading to a very 
considerable increase in the order of the dynamical 
matrices. The problem is therefore to find a suitable 
strategy for reducing the order of the dynamical 
matrices by summing such contributions together in 
an appropriate way. This can be done by considering 
the relationships between such contributions within 
the largest (final) unit cell. 

Keeping all this in mind, let us rewrite (3) for a 
general (non-zero) value of the wave vector q: 

o k k ' =  18frR2/V'(mkmk,)l/2~f(ah) 
h 

X E O 2 I F  h 2 /OX,kOXjk ,  exp(27riq. A r ' ) . °  t ( 4 )  
1 

The summation over l is extended to all the lattice 
translations within the final (largest) unit cell, since 
for multiples of this cell the contribution is constant. 
The volume V '=  nfndV is obviously a multiple of the 
initial unit-cell volume V; the summation over h is 
extended to all the indices of this final multiple unit 
cell, most of which correspond to fractional values if 
referred to the original unit cell (see above). 

Since IF, 2= F , F *  and x~, = x ~ + r  1, it will hold that 

a F, 2/Ox° k F, OF*'-  o , o = FhaF,/OX,k (Sa) h /OXik  -~- 

2 2 0 1 
F ,  /aXikOXjk .  

OFh/OX~k,a * 0 2 * 0 l = F h/O ik "JV F.O F h/OXikOXjk, 
, 1 o , 2 o 1 +aF./axjk,aF,/ax~k + F.a F,/ax,kaxjk,. (Sb) 

Since 
3FJOX°k = 2frihiZk exp (2frih. x °) 

(5c) , o OFh/OXik = --27rihizk exp (-27rih.  x °) 

then we have 

a F,/ axlk = a F,/ ax°k exp (2zrih. r') 
, I OFh/OXik F* o =0 h/OXik exp ( -2 r r ih . r / )  

and 
2 0 0 

0 ffh/c)XikC)X)k , =  3kk,47r2hihjZk exp (2zrih. x °) 
(5d) 2 , 0 0 0 F,/aX~kOX~k, = 3kk,4rr2hihjzk exp (-21rih.  x °) 

2 0 I a F,/OXikOXjk' = 0 
if k # k' and l # O. (Se) 2 , 0 I 

a F h / a X i k a X j k ,  = 0 

Here the form factor for the atom k simply corre- 
sponds to its charge Zk, as we have seen. From (Sa), 
(5b) and (5e), we have 

2 2 0 I 0 , 0 
O F, /OXikOXjk ,-~ e x p  . aF, /aXjk ,aF, /aXik  (2rrih r I) 

, o o +0F,/aXjk'OF,/OXik exp (-2zrih.  r t) 

+ t~kk.601( , 2 0 0 FhO Fh/OXikOXjk 
2 , 0 0 + FhO Fh/OXikOXjk). (6) 

The last term in (6) is non-zero only for k = k' and 
l--0,  i.e. it exists for the so-called 'self-terms' only. 

0k If one calls such a term s o (h), and considers that 
A r t = A r k k , + r  I, where Arkk, is the distance between 
the atoms k and k' in the original unit cell and 
r t= ~r°+g is a lattice vector (g is a lattice translation 
within the intermediate unit cell, and ~: is an integer), 
it holds that: 

D kk'-" 1 8 ~ R 2 / V ( m k m k . )  1/2 exp (2~'iq. A r k k .  ) 

x ~, {K~J(h) ~ y, exp [2~-i(h+q). (~:r°+ g)] 
h g: g 

+ K*iJ(h) ~ ~ exp [2"M(-h+ q). (~:r ° +g)]  
g 

+ f ( a h ) s ° k ( h ) }  (7) 
where 

KO(h) = f (  . o o a.)( O F, / OXikO F,/ OXjk,) 
(8) 

K.U(h) = f (  o . o a.,)(O F,/OX,ka F, / OX)k,). 

In (7) the strategy of summing together the contri- 
butions of equivalent atoms is achieved by means of 
the summations with respect to ~ and g. Therefore 
the order of D is the same as for usual lattice- 
dynamical calculations. 

Since h = H°+  tq, we have 

D kk '= 1 8 f r R 2 / V ' ( m k m k .  ) 1/2 exp (2zriq. A r k k .  ) ~ { K  V(h) 
h 

x ~ ~ exp [27ri(H ° + t q + q ) .  (~:r ° +g)]  + K*~J(h) 
¢ g 

x ~  exp [27 r i ( -H° -  tq+ q). (~:r°+ g)] 
g 

+f(~.)s°~(h)}. (9) 
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Since H ° . r  ° is integral, and considering that 
s°k(h) = 0 if h ~ H °, we have 

D kk'= 18"rrR2/(Vnfnd)(mkmk,) 1/2 exp (2irrq.  Arkk, ) 

x ~, {f(ario)s°k(n°)+~ exp (2zr in° .  g) 
H o g 

×Y, KiJ(H°+ tq) exp [27ri(t + 1)q. g] 
t 

x ~  exp [2zri~(t + 1)q. r °] + ~  exp ( -27 r i l l  ° . g) 
g 

x ~  K * ° ( H ° +  tq) exp [27ri(1 - t )q .  g] 
l 

x ~ exp [2"n'i~:(1 - t)q. r°]}. (10) 

Provided nfm is an integer, it will hold that 

nf  - 1 nj 

exp (27rim~)= ~ exp (27rim~:) 
~=o ~:l (11) 

= 0 if m not an integer 

= n s if m is an integer. 

Here, as we have already seen, n l q . r  ° is integral. 
Therefore,  the summations  over the index s ~ in (10) 
are non-zero only for t = - 1  or t = +1, respectively. 
It is easy to verify that such values of +1 for t are 
the only possibilities for having non-zero summation.  
Let us suppose,  for instance, that (tp + 1)q. r ° is an 
integer for tp ¢ - 1. This means that ( tp + 1 ) = kn I, with 
k integral, since we have chosen n!q.  r ° as the smallest 
possible integer. 

Therefore,  k is integral and >-1. 
Since, as we have seen, nfq = vr °*, we have 

h = H ° +  tpq = H ° +  ( k n f -  1)q = H ° +  knsq-  q 

= H ° +  k v r ° * - q  = H ' ° - q .  (12) 

Here H '° is another  reciprocal-lattice point  of the 
intermediate cell, and the contr ibution for h = H ° + tpq 
coincides with the corresponding contr ibut ion for 
h = H ' ° -  q. A similar result can be obtained for t # 1 
in the other  summation.  On such grounds,  (10) can 
be rewritten with considerable simplification: 

Dkkt ij = 187rR2/(Vnd)(mkmk') 1/2 e x p  (2"n'iq. A r kk,) 

X 2 tOk 0 {sij ( H )  + K ° ( H ° - q )  ~ exp (2-n'iH ° . g) 
H o g 

+ K*°(H°+q) ~ exp (-2rriH°.g)}.  (13) 
g 

Here 

st0krTw0\ ~; tnt )=f(ah)s°g(h)/nf .  

• s u (h) are equal to Since ~gexp  (27rill ° g) and ,Ok 
zero for extinct reflections (FH o-- F*o = 0), or to n d 

for non-extinct  reflections, (13) can be further sim- 
plified, and the summat ion  performed with respect 
only to non-extinct  reflections, corresponding to the 
points h ° of  the reciprocal lattice of the primitive unit 

cell of the crystal: 

o k k ,  ij = 187rR2/ V(mkmk') ~/2 exp (2~riq. Arkk,) 
X E t nOkz.Ox /si; tn ) + K ° ( h ° - q ) + K * i ; ( h ° + q ) } .  

hO (14) 

Here 
r0k  0 S:;.°k(h °) : sq (h) / r id .  

This means that in comput ing such terms using (6) 
Fh and F*  should be evaluated using only the contri- 
butions of  the atoms in the primitive unit cell, and 
not those of  the multiple cells. Because these terms 
are independent  of the wave vector q, their evaluation 
can be made once and for all at the beginning. This 
is an advantage in the case of the lengthy procedure 
of sampling the Brillouin zone at several points. The 
independence of the wave vector of such terms also 
means that in the diagonal blocks ( 3 x 3 )  of the 
dynamical  matrix, the s°k(h)'s must correspond to 
the so-called 'self-terms'  or 'self force constants '  
okk(o, 0). This is an alternative way for evaluating 
such constants,  instead of the usual relat ionship 

d)kk'(o I). (15) o k(0,0)=-2 _ , ,  ,v,  
! 

By inspecting the preceding equations (14), (8), 
,,Ok K~j and K *° are and (6), where the values of s~j , 

specified, we can easily see that the calculations are 
simple and essentially involve the usual derivatives 
of structure factors, as in the least-squares refinement 
of atomic positions in a crystal structure. 

Another  interesting feature of this process is that 
for each point  h ° of the reciprocal lattice of the 
primitive cell, there are two satellite points if frac- 
tional indices h°+  q and h ° - q  have to be considered. 
The situation recalls what is observed in incom- 
mensurate crystal structures (Bertaut, 1983, 1986) or 
in first-order (one-phonon)  scattering in problems of 
thermal motion (Willis 8,: Pryor, 1975). Needless to 
say, this analogy reflects close relationships in the 
basic physical process. 

For q - -0 ,  (3) or (14) can be written as 

Dgk,  ij = [18"rrR2/V(mkrnk') 1/2] 

x 2  ~. f (  o~ho){OAho/ OXOkOAh°/ OxO k, 
h a 

0 0 0 0 + dBho/dx ikd Bh°/0Xjk'-t- AhofAho/Ox i k 0 X j k '  

2 0 0 + BhoO Bho/OX~kOXjk,}. (16) 

Here, as usual, Fh = Ah + iBh; the last two terms in 
the above equation correspond,  as is obvious, to the 
'self-force constants. '  It is also easy to verify that in 
this case (q = 0) the Dkk"s a r e  all real, whereas for a 
general value of the wave vector q they are complex,  
as is required by theory. 

The rate of convergence for some practical cases 
(NaC1 and forsterite Mg2SiO4) appears from con- 
sidering Table 1 and Fig. 2. In both cases, when 
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Table 1. Analysis of  convergence of  frequencies o f  vibrational modes with respect to the maximum value of  
sin 0/h (A -1) or to the number of  reflections 

Data are for NaCI with Kellermann's (1940) field for various values of the wave vector q (referred to non-primitive cell). The value of 
R is 1.995,~. The values obtained by Kellermann are reported within parentheses below each set. 

Number of 
Components of q (sin 0/A)max reflections Frequencies (cm-t) 
0"0 0-0 0"0 0"2 7 0 0 0 158 158 321 

0"3 25 0 0 0 147 147 316 
0"4 56 0 0 0 153 153 319 
0"5 84 0 0 0 152 152 319 
0"6 165 0 0 0 152 152 319 
0"75 265 0 0 0 151 151 319 

(0 0 0 152 152 320) 

0"1 0"1 0"1 0"3 20i 20i 9i 145 145 313 
0"4 27 27 42 150 150 314 
0.5 27 27 45 151 151 315 
0"6 27 27 44 151 151 315 
0"75 27 27 44 151 151 315 

(27 27 45 151 151 315) 

0"3 0"1 0-1 0"3 33 41 69 145 150 298 
0.4 46 50 84 150 153 300 
0"5 48 52 87 151 153 300 
0"6 47 51 84 150 153 300 
0"75 47 51 85 150 153 300 

(47 51 84 150 153 301) 

0"5 0-1 0"1 0"3 51 61 113 150 152 269 
0"4 68 74 123 154 156 273 
0"5 70 77 125 155 157 273 
0"6 68 75 123 154 156 272 
0"75 68 75 124 154 156 272 

(57 83 124 150 160 273)* 

0.7 0"1 0"1 0"3 71 82 142 155 156 236 
0.4 84 93 150 159 161 242 
0"5 86 95 152 161 162 243 
0-6 84 93 150 160 160 241 
0-75 84 93 150 159 160 241 

(85 93 150 159 160 243) 

*These discrepancies between Kellermann's values and ours are the only ones we have noticed on an extensive exploration of the  Brillouin zone. The 
other discrepancies (within 1 cm -I)  are due to rounding effects. 

reflections with a maximum value of sin 0/A = 
0.40 A -1 are included, this is sufficient for most prac- 
tical purposes. 

In this work, the 'old' Kellermann (1940) model 
has been used only for testing our method and com- 
puter programs, the main advantages being its sim- 
plicity (which permits extensive and comparatively 
inexpensive checking) and the wealth of reported 
data in the original publication. Therefore, no claim 
is intended on grounds of a better agreement with 
the experimental data with respect to more recent 
and detailed calculations (see for instance Reid & 
Smith, 1970). 

Kellermann's field derives from considering the 
charge on the Na and CI atoms to be exactly equal 
to +1 electron units; the first and second derivatives 
of the potential V(r) around each atom are obtained 
from the condition of equilibrium (considering only 
the effects of the six nearest neighbours) and from 
the experimental value of the coefficient of compressi- 
bility K = 4.16 x 10 -15 m 2 N -~. 

Effects of symmetry 

Whereas the symmetry operations {M w} do not hold 
as such for instantaneous displacements, the crystal 
symmetry leads to equivalences between the F's  or 
their derivatives. For instance, we have: 

o =.MxO +w o Mx °+w and Xm, Xm = 

where m and m' are the atoms corresponding to k 
and k', respectively. 

Calling h"= (M-I ) rh  (see 5c): 

cg F h /  cgX ° = 2 7rihzk exp (27rih. x °) 

OF*/Ox °= -27rihzk exp (-27rih .x  °) 

OFh,,/Ox ° = 27rih"zk exp (27rih". x ° )  

= 27rih"zk exp (27rih. x °) exp (27rih". w). 

Referring to a new axial frame transformed by M 
with respect to the first, we have 

x~O = M - i x  0 ' 
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where x~ ° is the coordinate vector of the atom k with 
respect to the new frame. Since OFh./ax~= 
MrOFh,,/Ox ° etc., we have 

tO , tO ( O Fh"/ OXm) i( O Fh"/ OXm')j 
(MTOFh,,/oxO), 7" . 0 = (M OFh,,/OX.c)j 

= 4zrZz~, exp (27rih. x °) exp (27rih". w)(Mrh")i 

x exp (-2~rih. x°,) exp (27rih". w)(MTh")j. 

Since M r h  "= h, we have 

(0 Fh.I 0x~),(0 F*,I 0x '°,.,)j=(0Fh/0x°), (O F* I 0x°,)j 

or, similarly, 
tO , rO 0 , 0 

O F h " / O X i m O F h " / O X j m '  = O F h / O X i k O F h / O X j k , .  (17) 
From (8), (14) and (17), it is easy to see that the 

contributions to the elements of the dynamical matrix 
D~ k' are the same for atoms related by a symmetry 
operation, provided: (1) the indices are also trans- 
formed; (2) the derivatives are with respect to a new 
axial frame, related by symmetry, so that different 
references for any set of non-equivalent atoms must 
be chosen; (3) since h = h°+q, the transformation of 
indices also involves the wave vector q. Therefore, for 
q # 0, such symmetry relationships connect different 
dynamical matrices, where 

q" = (M-1)rq. 
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Fig. 2. Analysis of convergence of values of vibrational frequencies 
for forsterite Mg2SiO4 with different values of maximum sin 0/A 
or number of reflections considered. The data here reported are 
for q = 0 and B3g modes. The potential field and model are taken 
from Iishi (1978), with slight modifications (Pilati, Bianchi & 
Gramaccioli, 1990). The value of R is 0-808 ,~. 

All this is clearly in line with the well known symmetry 
relationships in the Brillouin zone (see,. for instance, 
Filippini, Gramaccioli, Simonetta & Suffritti, 1976). 

Within a single dynamical matrix, except for the 
special case of q=0 ,  the symmetry relationships 
between the Fh'S do not seem to bring any sim- 
plific#tion. For h "°= - h  °, however, the contributions 
to the Dkk"s are the same, as can best be seen from 
(5d) and (8), considering that 

f ( a _ h O _ q )  = f ( a h O + q )  and F h  = F * _ h  . 

In other words, Frieders law holds and this in any 
case dispenses the necessity of carrying on the 
summations on more than one-half the limiting 

sphere.  

Influence of the wave on the electric field: 
T O - L O  splitting 

The limit for q ~ 0  of (14) coincides with (16). The 
only exception is the contribution for h ° = 0. Here, in 
fact, because h ~ q and (as we have seen) a = 2rr h R, 
a singularity occurs for f ( a ) :  

lim f ( a )  = lim [sin (a)  - a cos (a) ]2/a8 
h-~O a-~O 

(q~O)  
=l im 1 /9a2=l im 1/(36rr2R21h[2)=oo. (18) 

a-- ,0  a---0 

Therefore, this contribution ( kk' D o )hO=0 will be 

lim (Dkk')h°=0 = 1 8 7 r R 2 / V ( m k m k , )  !/2 lim ~s o ¢ ttOk ( 0 )  

q ~ O  q-,O 

, 0 0 + (0 Fq / Ox ik 0 Fq/OXjk, 
0 , 0 2 2 2 +OFq/OX,kOFq/OXjk,)/(367r R [q )} 

(19) 
since 

lim _ t t O k  , , ~  \ sij to) = 0 
q ~ 0  

[because Fo*oo = Fooo=~,kZk i.e. the total net charge 
present in the cell. See also (6) and (5d) for complete- 
ness]; furthermore, considering (5c) and writing q = 

q, where ~ is the unit vector along the direction of 
q, we have: 

lim (D~k')ho=O = 187rR2/V(mkmk,) 1/2 
q--*0 

x lim [87r2~i~jZkZk, q 2/(36~'2R2 q 2)] 
q-*0 

=4rr/V(mkrnk,)l/2~i~jZkZk ,. (20) 

Equation (20) clearly shows the limit for q ~ 0 not to 
be unique, but to depend on the direction ~ of 
approach. Such a limit coincides exactly with the well 
known contribution of the macroscopic field set up 
during the vibration in the rigid-ion model, in the 
absence of retardation effects (see, for instance, 
equations A.2.19, 4.28, etc. in Venkataraman, Feld- 
kamp & Sahni, 1975), which leads to the so-called 
TO-LO splitting of IR-active modes. 
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Consequent ly ,  Bertaut 's  method for evaluat ing the 
Coulombic  lattice energy in a crystal can be usefully 
extended to appl icat ion in lattice dynamics,  and in a 
'na tura l '  way it implicitly accounts for a remarkably  
detailed t rea tment  of  the problem. 
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Thermal Motion in Protein Crystals Estimated Using Laser-Generated Ultrasound and 
Young's Modulus Measurements 
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Abstract 

The measurement  of  the longitudinal speed of  sound 
in crystals of  r ibonuclease-A and in human  haemo-  
globin using laser-generated ul t rasound is reported.  
Average values of  1784 (72) m s -1 and 1828 m s -I 
were obtained.  As a control the speed of  sound trans- 
mitted through a compacted  disc of  lysozyme powder  
was measured  as 2 0 0 4 ( 2 3 ) m s  -1. The measured  
longitudinal  acoustic velocities and the transverse 
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velocity, est imated f rom a knowledge of  Young 's  
modulus,  were used to estimate the acoustic contribu- 
tion to the mean-square  displacements  of  protein 
molecules as determined by X-ray crystal lography.  It 
was found that  thermal ly  induced acoustic vibrations 
make a significant contr ibut ion to the total a tomic 
disorder,  est imated to be in the range 0.04-0.11 A2 
for the proteins studied. Such single-crystal estimates 
are required for calculat ion of  the acoustic com- 
ponent  of  the diffuse scattering in protein crystal 
X-ray diffraction. 

Introduction 

X-ray diffraction from protein crystals yields pat terns  
comprised oft.wo components ,  namely,  the Bragg and 
the diffuse scattering. The measurement  of  the diffuse 
scattering and at tempts  at its interpretat ion are a new 
development .  The advent  of  area detectors,  high- 
intensity synchrot ron radiat ion and supercomputers  
means that  it is now easier to try to exploit  the 
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